Conway Products and Links with Multiple Bridge Surfaces

نویسنده

  • MARTIN SCHARLEMANN
چکیده

Suppose a link K in a 3-manifold M is in bridge position with respect to two different bridge surfaces P and Q, both of which are c-weakly incompressible in the complement of K. Then either • P and Q can be properly isotoped to intersect in a nonempty collection of curves that are essential on both surfaces, or • K is a Conway product with respect to an incompressible Conway sphere that naturally decomposes both P and Q into bridge surfaces for the respective factor link(s).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Alexander-Conway polynomials of two-bridge links

We consider Conway polynomials of two-bridge links as Euler continuant polynomials. As a consequence, we obtain simple proofs of the classical theorems of Murasugi and Hartley on Alexander polynomials. We give a modulo 2 congruence for links, which implies the classical modulo 2 Murasugi congruence for knots. We also give sharp bounds for the coefficients of the Conway and Alexander polynomials...

متن کامل

Skein Modules of Links in Cylinders over Surfaces

We define the Conway skein module (M) of ordered based links in a 3-manifold M . This module gives rise to (M)-valued invariants of usual links in M . We determine a basis of the Z[z]-module (Σ× [0,1])/Tor( (Σ× [0,1])), where Σ is the real projective plane or a surface with boundary. For cylinders over the Möbius strip or the projective plane, we derive special properties of the Conway skein mo...

متن کامل

On Alexander-Conway Polynomials for Virtual Knots and Links

A polynomial invariant of virtual links, arising from an invariant of links in thickened surfaces introduced by Jaeger, Kauffman, and Saleur, is defined and its properties are investigated. Examples are given that the invariant can detect chirality and even non-invertibility of virtual knots and links. Furthermore, it is shown that the polynomial satisfies a Conway-type skein relation – in cont...

متن کامل

On Alexander-conway Polynomials for Virtual Knots and Links

A polynomial invariant of virtual links, arising from an invariant of links in thickened surfaces introduced by Jaeger, Kauuman, and Saleur, is deened and its properties are investigated. Examples are given that the invariant can detect chirality and even non-invertibility of virtual knots and links. Furthermore, it is shown that the polynomial satisses a Conway-type skein relation { in contras...

متن کامل

An Elementary Proof That All Spanning Surfaces of a Link Are Tube-equivalent

Abstract. The standard proof that the potential function models the Alexander-Conway polynomial depends on the fact that all spanning surfaces of a link are tube-equivalent [K1]. Proofs that all spanning surfaces of a link are tube-equivalent use machinery such as the Thom-Pontrjagin construction [L]. Here we present an elementary geometric argument in the case of links in S which allows one to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006